Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Emerg Infect Dis ; 27(9): 2499-2501, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1435937

ABSTRACT

We examined virus genomic evolution in an immunocompromised patient with prolonged severe acute respiratory syndrome coronavirus 2 infection. Genomic sequencing revealed genetic variation during infection: 3 intrahost mutations and possible superinfection with a second strain of the virus. Prolonged infection in immunocompromised patients may lead to emergence of new virus variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Evolution, Molecular , Genomics , Humans , Immunocompromised Host , Ireland
2.
Ann Clin Biochem ; 58(5): 496-504, 2021 09.
Article in English | MEDLINE | ID: covidwho-1255782

ABSTRACT

STUDY OBJECTIVE: SARS-CoV-2, which causes coronavirus disease (COVID-19), continues to cause significant morbidity and mortality. The diagnosis of acute infection relies on reverse transcription-polymerase chain reaction (RT-PCR)-based viral detection. The objective of this study was to evaluate the optimal serological testing strategy for anti-SARS-CoV-2 antibodies which provides an important indicator of prior infection and potential short-term immunity. METHODS: The sensitivity and specificity of four different ELISA assays (Euroimmun IgG, Euroimmun NCP-IgG, Fortress and DIAsource) and one CLIA assay (Roche ELECSYS) were evaluated in 423 samples; 137 patients with confirmed RT-PCR COVID-19 infection (true positives), and 100 pre-pandemic samples collected prior to October 2019 (true negatives). A further 186 samples were collected from health-care staff and analysed by all five assays. RESULTS: The Fortress ELISA assay demonstrated the highest sensitivity and specificity followed by the Roche ECLIA assay. The highest overall sensitivity came from the assays that measured total antibody (IgM-IgG combined) and the three assays that performed the best (Fortress, Roche, Euroimmun IgG) all have different antigens as their target proteins which suggests that antigen target does not affect assay performance. In mildly symptomatic participants with either a negative RT-PCR or no RT-PCR performed, 16.76% had detectable antibodies suggesting previous infection. CONCLUSIONS: We recommend a combined testing strategy utilizing assays with different antigenic targets using the fully automated Roche ECLIA assay and confirming discordant samples with the Fortress Total Antibody ELISA assay. This study provides an important indicator of prior infection in symptomatic and asymptomatic individuals.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/immunology , Pandemics , SARS-CoV-2 , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing/statistics & numerical data , Electrochemical Techniques/methods , Electrochemical Techniques/statistics & numerical data , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/statistics & numerical data , Female , Health Personnel , Humans , Immunoglobulin G/blood , Ireland/epidemiology , Luminescent Measurements/methods , Luminescent Measurements/statistics & numerical data , Male , Pregnancy , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL